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In the last decade, the computer modeling of matter by 
simulations has become a very important area of theoretical 
chemistry.(l) One goal of the simulations is to understand the 
properties of macroscopic systems starting from the Coulomb 
potential and Schroedinger equation. Although it is feasible 
that simulation methods can treat the complete many-body quan
tum problem,(2Y most'simulations today assume a classical model 
with some effective interparticle potential., There are two 
common methods employed, Metropolis Monte Carlo (MC)(3) is an 
effective algorithm used for calculating static prop~rties of 
many-body systems. Molecular Dynamics (MD)(4) is the term 
employed when Newton's equations of motion are solved to find 
equilibrium and non-equilibrium, dynamic and static properties 
of many-body systems. What all of these simulations methods 
have in common and their limitation is a processor fast enough 
to move hundreds of atoms, hundreds and thousands of times. 
What I want to discuss in this short note, are some of the 
computational characteristics of simulations and my experience 
in using a standard simulation program on several scientific 
computers. 

While at the National Resource for Computation in Chem
istry, I have developed a general classical simulation program, 
called, CLAMPS (for classical many particle simu1ator)(5) cap
able of performing Mr and MD sTmulations of arbitrary mTxtures 
of single atoms. The potential energy of a configuration of N 
atoms at positions R = {r1, ... , rN} and with chemical 
species {a.l,···• aN} is assumed to be a pairwise sum of 
spherically symmetric functions. 

U = [ rl>a·a·(lri-rjl) 
i<j , J M 

( 1) 

Where $o:B(r) is the interaction between two atoms of type a and 
Band lriM means the minimum image distance consistent with 
periodic boundary conditions. In addition, there can be 



bonding potentials between certain pairs of atoms. If some of 
the atoms are charged there is another term in the potential 
energy arising from the interaction of a charge with the 
charges outside the simulation box: the Ewald image 
potential.(6) This can be conveniently written as 

- U[ = L Vkl Pkl 2 
k 

(2) 

Where k is a vector in the reciprocal lattice of the simulation 
cell, Pk is the Fourier transform of the charge density, 

Pk = Lqi exp(ik· ri) 
i 

qi is the charge of particle i, and Vk is the Fourier 
component of the long range potential.(6) 

(3) 

In simulations, computation of the potential energy and 
forces takes the vast majority of the computer time. The other 
operations, such as moving the particles, usually are much 
quicker. Shown in Table I is the FORTRAN coding needed to 
compute the pair sum in eq. (1). In a general purpose program 
such as CLAMPS one cannot assume that the pairwise interactions 
are simple enough to compute at each step, whereas, a table 
lookup is equally efficient for all systems. In CLAMPS the 
potentials and the derivative -r-1d¢/dr are computed on a 
grid linear in r2 at the beginning of the program and 
stored. Tables with the order of 104 entries usually give 
sufficient accuracy for most problems without any interpolation 
because of the stafistical nature of the computation. 

The coding in Table I illustrates the central problem of 
simulations. The number of pairs is N(N-1)/2. The number of 
floating point operations (FLOPS) per pair is about 25, 
assuming the branches are executed 50% of the time. Thus for 
100 atoms (a minimal simulation) we will need 1.2 x 105 FLOPS 
for a single time step. The number of memory and indexing 
operations is similarly large. Typically one needs to execute 
between 103 and 105 time steps. Thus the simulations are 
limited by the number of floating point operations one can 
afford. 

For systems which can be modeled with particles interacting 
with only short ranged forces (that is the potential can be 
neglected beyond several neighbor shells), the number of 
operations per time step will be proportional to the number of 
particles times the average number of neighbors of a given 
particle. For such models, simulations of 104 atoms are 
possible today on available mainframe as well as 
minicomputers. For many chemical systems, such as those 
containing macromolecules, one would like to work with still 
larger systems over many time steps. Even with today's 
computers, most chemical systems cannot be simulated without 
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Table I 

C LOOP OVER ALL PAIRS OF ATOMS I, J 
DO 1 1=1, NATOMS-1 
DO 2 J=I+l, NATOMS 

C CALCULATE PERIODIC DISTANCES 
R2=0.0 
DO 3 L=l, NDIM 
DX(L)=X(I,L)-X (J,L ) 

C ELL AND EL2 ARE THE BOX AND HALF THE BOX LENGTHS 
IF (DX(L).GT.EL2(L)) DX(L)=DX(L)-ELL(L) 
IF (DX(L).LT.-EL2{L)) DX(L)=DX{L)+ELL (L) 

3 R2=R2+DX{ L )**2 
C IT AND JT ARE THE CHEMICAL TYPES 

IT= !TYPE { I ) 
JT =ITYPE { J ) 

C CONVERT DISTANCE TO A TABLE ENTRY 
Ll=CSI ( IT,JT)*R2 

C IF OUTSIDE TABLE POTENTIAL IS ZERO 
IF(LI.GE.LMAX) GO TO 2 

C LT IS THE TABLE FOR THIS INTERACTION 
LT=LTABLE( IT,JT) 

C LOOK UP POTENTIAL AND DERIVATIVE 
V=V+EPS(IT,JT)*PTABLE(LI,LT) 
FT=EPSF{IT,JT)*FTABLE(LI,LT) 

C NOW ADD TO FORCES 
DO 4 L:1, NDIM 
F=FT*DX ( L) 
FORCE( I,L )=FORCE{I,L)+F 

4 FORCE( J,L )=FORCE{J,L)-F 
2 CONTINUE 
1 CONTINUE 

FORTRAN Code for the pairwise sum of eq. (1). 
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making many simplifying assumptions. Both a supercomputer as 
well as better algorithms are necessary to tackle these 
problems. 

For the purpose of comparing performance on different 
computers, I have used the Stillinger-Lemberg(?) model for 
water. This model contains central force interactions between 
charged oxygen and hydrogen atoms. The three different poten
tial functions between 00, OH and HH, are tailored to give the 
correct geometry and dipole moment for an isolated molecule and 
some of the pair bonding properties of two molecules 

Simulations of charged systems are very important. Common 
examples are plasmas, ionic solutions, dipole system and elec
tronic systems. Because all pairs are included in the sum of 
eq. (2), the computer time only depends on the number of atoms 
and the number of time steps. For this reason my results 
should be applicable to all similar systems. I will discuss 
here only results for molecular dynamics simulations. The 
situation for Monte Carlo is completely parallel, although the 
actual coding is different since atoms are moved singly rather 
than all together. 

Because the atoms are charged, the Ewald image potential 
from eq. (2) must be used to account for the long-range Coulomb 
potential. In the following benchmarks, I have included all 
terms in the sum in eq. (2) for which k < 6n/L; this comprises 
123 terms, and is adequate to represent the potential to one 
part in 104. As long as the number of terms is held fixed, 
the computer time to evaluate eq. (2) will be proportional to 
the number of atoms while the pairwise sum in eq. (1) will take 
time proportional to the square of the number of atoms. Thus 
for large enough systems, it is the pairwise sum which 
dominates the calculation. The sines and cosines needed for 
Pk are computed recursively. I will not discuss the 
computation of the Ewald sum in detail, because it is 
relatively specialized. 

Computer Comparisons 

In this section, I will discuss the programming conside
rations and timing results for the four computers on which 
I have tested CLAMPS. In all cases the code was not substan
tially changed. Essentially only the routines which performed 
the sums in eqs. (1) and (2) were modified. All changes were 
in FORTRAN or with FORTRAN callable routines. The timing 
results are not optimal, but rather typical of what could be 
achieved by a user in FORTRAN. The timing results are given in 
Table II for systems containing 27 and 216 molecules (81 and 
648 atoms). MFLOPS refers to the number of million floating 
point operations per second in executing the pairwise sum of 
Table I assuming each pass through consists of 25 floating 
point operations. 
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Table II 

Tp is the time in seconds to execute the pairwise sum in 
equation (1}; T is the total time in seconds per molecular 
dynamic step. MFLOPS is the number of million floating point 
operations per second of the code in Table I, assuming that it 
contains 25 FLOPS (i.e., MFLOPS = 1.25 x 105 x N(N-1)/Tp) 
where N is the total number of atoms, 81 or 648. The asterisk 
on CRAY-1 indicates a vectorized version of CLAMPS was used. 

81 Atoms 648 Atoms 
Computer Tp MFLOPS T Tp MFLOPS T 

VAX 11/70 0.35 0.23 1.63 22.2 0.24 32.5 

CDC 7600 0.033 2.5 0.125 2.1 2.5 2.85 

CRAY-1 0.0182 4.5 0.100 1.1 4.8 1.77 

CRAY-1* 0.0070 11.6 0.0157 0.257 20.4 0.311 

VAX-FPSAP - - - 25.0 0.21 -

DEC VAX 11/70 

The VAX used, is located at NRCC in Berkeley, has a float
ing point accelerator, 2.5 M Bytes of memory, and was running 
version 1.3 of the operating system. The code was run in 
single precision (32 bits/word) and that was found adequate to 
conserve energy and give satisfactory equilibrium properties. 
The code used to perform the pairwise sum is essentially that 
of Table I. 

CDC 7600 

The 7600 used is located at Lawrence Berkeley Laboratory, 
is approximately ten years old and has 65 K of 60 bit word fast 
memory (small core). Because CLAMPS has dynamic memory 
allocation, it is possible to fit a simulation in fast memory 
of up to about 2000 atoms as long as the potential tables are 
not too extensive. The compiler used was the standard CDC FTN 
4.8, OPT=2. The only difference between the CDC coding of the 
pairwise sum and that in Table I is that the periodic boundary 
conditions (loop 3) are handled by Boolean and shift opera
tions instead of branches. Branches on the 7600 causes all 
parallel processing to halt. 
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CRAY-1 

The CRAY used is located. at Lawrence Livermore Laboratory. 
Characteristics of the CRAY are described elsewhere, in this 
volume. There is a large advantage in achieving vector rather 
then scalar code. This can be seen in Table II. Initially, 
the CDC version of CLAMPS was run on the CRAY with the time 
results showing it only slightly faster than the 7600. Several 
subroutines of CLAMPS were then vectorized and the simulation 
executed in approximately 1/5 the time. The vectorized version 
of the pairwise sum appears in Table III. The.problems 
encountered in vectorizing this routine were: 

1) The periodic boundary conditions in loop 3 contain 2 
branches. Vectorization was achieved by using the FORTRAN 
callable vector merge function. 

2) The branch for the case when the squared pair separation is 
outside the table will inhibit vectorization. The last 
element of the table has been changed to zero and all 
occurrence outside the table are truncated to LMAX. The 
rest of the code, which is not executed on the VAX or CDC 
7600, is executed here. It is often necessary on a vector 
machine to increase the total number of floating point 
operations to achieve vector rather than scalar 
processing. The MFLOP rates reported here are computed on 
the basis of the original number of floating point 
operations. The extra ones added to achieve vectorization 
are not included. 

3) The table look-u~s for the force and potential can be done 
with the GATHER function. GATHER (N, A, B, INDEX) is 
equivalent to the FORTRAN statements. 

DO 2 I = 1, N 
2 A(I) = B(INDEX(I)) 

Although GATHER is a scalar operation and rather slow, 12 
machine cycles/element, (a machine cycle is 12.5 ns), 
GATHER is faster than computing all but the simplest 
inverse power potentials. By comparison a square root 
takes 14 machine cycles/element and the entire pairwise sum 
takes an average of 98 machine cycles/pair. Note that 
temporaries are set up for the scaling factors of the 
potential, as well as the addresses for the start of the 
tables. These temporaries are changed only rarely and so 
do not affect the timing. They would be unnecessary if 
there were only one type of particle. 
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Table III 

C LOOP OVER All PAIRS OF ATOMS I,J 
ITL=O 
DO 1 l=1,NATOMS-1 
11=1+1 
NC=NATOMS-I 

C CHECK TO SEE IF WE NEED TO REFRESH OUR TEMPORARIES 
IF( ITYPE(I).EQ.ITL) GO TO 20 
ITL=ITYPE( I ) 

C GATHER MAKES EPST(J )=EPS(ITYPE(J),ITYPE(I)) 
CALL GATHER(NC,EPSF (Il),EPS(l,ITL),ITYPE(Il)) 

C GATHER ALSO EPSF, CSI AND LTABLE 
CALL GATHER(NC,EPSFT(Il),EPSF(1,ITL),ITYPE(Il)) 
CALL GATHER(NC,CSIT(Il),CSI(1,ITL),ITYPE(Il)) 
CALL GATHER(NC,LTABT(I1),LTABLE(1,ITL),ITYPE(Il)) 

2 DO 3 J=Il,NATOMS 
3 R2(J)=0. 
C CALCULATE PERIODIC DISTANCES 

DO 4 L=1,NDIM 
T=SIGN( ELL(l),X(I,l) 
DO 5 J=l1,NATOMS 

C CVMGP(X,V,Z)=X If Z.GT.O AND Y OTHERWISE 
5 DX(J,L )=CVMGP((X(I,l)-X(J,l))-T,X(I,l)-X(J,L) 

+,ABS(X( I,L )-X( J,l ))-EL2( L )) 
DO 4 J=Il, NATOMS 

4 R2(J)=R2(J)+DX(J,L)**2 
C MAKE R2 INTO TABLE ENTRIES WITH LMAX BEING MAXIMUM 

DO 6 J=Il,NATOMS 
6 INDEX(J)=LTABT(J)+MINO (LMAX,INT(CSIT(J)*R2(J))) 
C GATHER V(R( J ) )#INTO A VECTOR 

CALL GATHER(NC,R2(I1),PTABLE, INDEX(Il) 
C SUM THEM UP 

VTOTAL=VTOTAL+SDOT(NC,R2(Il),l,EPST(Il),l) 
C GATHER DERIVATIVES FROM FTABLE INTO R2 

GALL GATHER(NC,R2(Il),FTABLE,INDEX(Il),l) 
DO 7 J=Il, NATOMS 

7 R2(J)=R2(J)*EPSFT(J) 
C MULTIPLY BY DISPLACEMENTS AND ADD INTO FORCE VECTORS 

DO 8 L=l, NDIM 
FORCE (I,L)=FORCE(I,L)+SOOT(NC,R2(Il),l,DX(Il,L),l) 
DO 8 J=Il,NATOMS 

8 FORCE(J,L)=FORCE(J,L)-R2(J)*DX(J,L) 
1 CONTINUE 

FORTRAN code, optimized for the CRAY, which performs the 
pairwise sum of eq. (1). 
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4) The summing of the force on particle I can be performed by 
the BLAS (8)(Basic Linear Algebra Subroutine) SOOT, which 
is quite efficient (about 3.5 machine cycles/element). 

attached Floating Point Systems Array Processor 

The system used is that located in the Chemistry Department 
at Columbia University. The architecture and characteristics 
of the Array Processor (120B) are described elsewhere in this 
volume. A very careful investigation of the use of an array 
processor to perform Monte Carlo simulations has been done by 
Chester, et. al.(9) There they demonstrated that with assembly 
language hand codTng (APAL) a simulation on the AP would run 
about twice as long as an CDC 7600. Here we report the timing 
results for the pairwise sum using APTRAN, the FORTRAN Cornell 
computer (Level 3.5). Because of the size of CLAMPS (3500 
lines), and the intermix between calculations and I/0 
operations, the entire code cannot be compiled in the AP. 
Instead a single subroutine, which contains the coding in Table 
I was written, with all data passed through a common block. 
This routine then executes on-the AP with the rest of the 
program executing on the host (VAX 11-70). Before each 
calculation of the pairwise sum, the coordinates need to be 
passed to the AP. After it is finished the potential and 
forces are then passed back to the host. The transmittal time 
is small (less then 10 ms), so that this mode of operation is 
satisfactory if there are at least 100 particles. However, the 
code generated by the compiler is not nearly as efficient as 
assembly language coding would be, the pairwise sum executes in 
roughly the same time as in the VAX alone. Undoubtedly 
restructuring of the FORTRAN would improve the execution time. 
The accuracy (38 bits) of the AP is sufficient for molecular 
dynamics. A general review of array processors and their 
usefulness for chemical computations is contained in Ref. (10). 

Simulation Needs 

Finally I would like to summarize the computational char
acteristics of simulations and what makes a good simulation 
computer. 

1) A simulation is almost always cpu bound. Hence, fast 
floating point speed is essential. 

2) Memory size can be made quite small, 20K to 200K. 

3) Accuracy demands are less than in many areas of 
computational chemistry. Usually one needs accuracy only 
to one part in 104 in energy for Monte Carlo and one part 
in 106 for the forces in Molecular Dynamics. 
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4) As we have seen on the CRAY the ability to gather data 
together is essential. Memory speed must be commensurate 
with floating point speed. When nearest neighbor tables 
are used fast scatter operations are also needed. The two 
essential random memory operations needed are: 

B(I) = A(INDEX(I)) 
B(INDEX(I)) = B(INDEX(I)) + A(I) 

5) Except for the above gather-scatter operations, simulations 
are easily vectorizable as defined by the CRAY FORTRAN or 
the CYBER 200 FORTRAN. Typical vectors have 50 to 500 ele
ments each. 

6) The Basic Linear Algebra Subroutines (BLAS) are a conven
ient way of maintaining efficiency and portability. They 
should be extended to include such things as GATHER, and 
vectorized EXP, SQRT, SIN and COS. 
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